

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 1

Recycling Oterro

Recycling Oterro

Neil Smith & Suzy Smith
Aspen Software

Summary

As we know, R:BASE 2000 provides a superb environment for the rapid production of database
applications. Oterro gives us a way to benefit from the power of the R:BASE Engine when using
Microsoft Visual Basic as our main application development tool. Using Visual Basic gives us
access to incredible control and diversity in the production of an application. However, this
does come at a price – compared to R:BASE there is much more work for the developer to do.

“Recycling Oterro” shows how we can start to close this productivity gap. Focussing on
techniques such as COM object production and use, coupled with table driven structures, we
will see how you can gain great productivity through real software re-use. Using the power of
Oterro, Visual Basic and Active Server Pages with WebClasses, you will see how building
block utilities can be harnessed and recycled to speed production of both Windows and Web
based applications

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 2

Recycling Oterro

Languages

As developers we face constant choices about the
environments we should use to build solutions for
our clients. Learning and moving to new
environments can involve a considerable investment
of both time and money. Over the years, R:BASE,
with one of the most complete database application
development environments on the market has served
us very well – and indeed, it continues to do so.

Given the nature of the IT industry, I believe that we
should have open minds and be willing to consider
other ways of doing things. All of us can learn from new ideas. Tempered with our own
experience and healthy pragmatism we can apply these ideas to our own ways of working to give
even better results.

Using the power of the R:BASE database engine with something other than the mighty R>
prompt might be one such idea! Today, if we are developing “outside” an R:BASE application
and want to access an R:BASE database, we use RBTI’s Oterro. We can use Oterro with
programming languages such as C++, Delphi and Visual Basic. This paper will focus on the use
of Visual Basic and present a number of techniques that work for us, Aspen Software.
Hopefully, they will work for you too. Please bear in mind though, that they are not the only the
way we can achieve these results – as we all know, with software development there is not
always a right or wrong way to get a result – just choices.

Microsoft released Visual Basic (VB) in 1990. Today, the product is at version 6.0 and version
7.0 (possibly to be called VB.net!) will be shipping next year. Visual Basic is probably the most
widely used tool for the development of Windows hosted business solutions.

 In 1994, Microrim released the “SQL Engine” a product that allowed us to access R:BASE 4.5
databases from the 16-bit version of VB. In 1995, around the same time as R:BASE for
Windows 5.0, enhancements were made so that 32-bit VB could also access these databases.
The SQL Engine was not without certain eccentricities, however, it still works today and there
are legacy users who have active 4.5++ applications also being accessed by 32-bit Visual Basic
applications.

Visual Basic also popularised the notion of using pre built components to help build your final
application. Such components could be developed in house or they could be bought in “off the
shelf”. Indeed this has helped build a market for components and services that is expected to
grow to $4.4 billion worldwide by 2002 (Source: Pricewaterhouse Coopers).

Visual Basic is positioned as a productive tool for creating fast business solutions for Windows
and the Web. For example, using the component approach, if you had R:BASE data which you
wanted to say: display in a Gantt chart, include in a mapped image, email to another user, or
securely encrypt, then, while you could write the entire application yourself in VB, you would
probably buy components to add the required functionality to your application.

© 2000 Aspen Software

Languages

! Choices
! No right or wrong answer
! History
! Productivity
! Re-Use
! Components galore

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 3

Recycling Oterro

Re Use – What Can We Do?

Imagine a client requirement for a small part of an
overall application. This is a Customer
Relationship Based system and they want to log
and track “notes” made by their representatives
when communicating with their clients. Typically
they want to:
" Make free format notes about any aspect of

the customer’s dealings with their
organisation.

" Allow notes to be made from dragging and
dropping emails.

" Allow files such as word documents and spreadsheets to be attached to the notes.
" Allow the setting of reminders to carry out actions at some future time.
" Allow an easy way of reviewing these actions and notes.

Overall, this is not an uncommon requirement, as developers it is likely we will all have done
similar things many times for many customers. In this case, this part of the solution, which
delivered all of the required functionality, comprised some of the following screens and
elements:

© 2000 Aspen Software

Re Use – What Can We Do?

! Note tracking subsystem
– Attach notes to multiple objects
– Allow free format note entry
– Allow drag & drop of email & files
– Allow file attachments
– Allow setting & review of actions for follow up
– Ensure ease of review of notes & actions

Imagine this….

…an application
requirement.

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 4

Recycling Oterro

Note Tracking Subsystem

As you will see, the real benefit using this
approach occurs when we want to put similar
facilities within another application.

The functionality just illustrated was implemented
within a component file (in this case an ActiveX
control). This allows us to deploy a thoroughly
tested and debugged application element that
interacts with our main application in a well-
defined way.

Core Technologies

In order to get this to work, and allow it to encompass web applications, we have to address three
core technological areas:
" Data Access – how do we get the data from our R:BASE database into Visual Basic and

back into R:BASE again?
" Component Integration – how do we actually write and deploy program components

with the functionality we want that can be used by others?
" Web Integration – how do we then also use the components so they can be viewed

across the web by any browser?

Data Access

R:BASE shields us from the mechanics of getting
the data from the database into our programming
language.

SELECT varValue INTO vMyVar +

FROM utConfig +
WHERE varName = ’vLogDir’

Gives us immediate access to the value of the
column varValue in our R:BASE application
code. Another example would be:

CONNECT ConComp
UPDATE Product SET ListPrice = ListPrice * 1.1
DISCONNECT

© 2000 Aspen Software

Note Tracking Subsystem

© 2000 Aspen Software

Data Access
! R:BASE – Complete Environment

CONCOMP.rb?
R:BASE

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 5

Recycling Oterro

ODBC

Outside of R:BASE, we need a “standard” way of
getting to our data. Open Database Connectivity
(ODBC) lets us achieve this.

ODBC is an application programming interface
(API), with elements that typically look like:

Declare Function SQLConnect _

Lib "ODBC32.DLL" _
(ByVal hdbc&, ByVal szDSN$,_
ByVal cbDSN%, ByVal szUID$, _
ByVal cbUID%, _
ByVal szAuthStr$,ByVal cbAuthStr%) As Integer

ODBC has been around a “long” time and it works. Developments started at a number of DBMS
vendors in the late 1980’s. By 1994, when the R:BASE SQL Engine was released ODBC 2.0
was available. Today, the current version of ODBC is 3.52.

At its simplest, a Visual Basic database application will build strings of SQL commands, issue
them against a database, fetch any returned data and store it within VB variables for subsequent
processing.

To access a database from your Visual Basic program, the program will typically communicate
with the ODBC manager “ODBC32.dll” (a Microsoft file). The ODBC Manager then
communicates with the ODBC Driver (such as Oterro). Behind the scenes, Oterro comprises a
number of files: Ot2k_32.dll, Ot2kins.dll, Ot2k1.msg, Ot2k2.msg, Ot2k3.msg and Oterro.cfg.

A further choice you have to make within Visual Basic is how you control the communication
with the ODBC Manager. Your choices are:
" Data Access Objects (DAO) – this communicates via the Microsoft Jet (Access!) engine

and presents a rich object model of your database (and slows everything down).
" Remote Data Objects (RDO) – this does not use Jet, and hence is quicker and provides

a slightly different object model of your database.
" ODBCDirect – this uses the same object model as DAO but without using Jet.
" ODBC API Calls – forget about object models, this uses the raw calls of the ODBC

Manager. It is the quickest way to get to your data – but is complex and less “friendly”.

A raw example (with no error handling) of Visual Basic using ODBC API calls to connect, apply
an update and disconnect is as follows:

'Allocate environment handle
retcode = SQLAllocEnv(DBEnv)

'Allocate connection handle
retcode = SQLAllocConnect(DBEnv, DBHandle)

'Connect
DBName = "CONCOMP"
retcode = SQLDriverConnect(DBHandle, DBName, SQL_NTS, " ", 0, " ",

0)

© 2000 Aspen Software

Data Access
! ODBC – Open Database Connectivity

CONCOMP.rb?

ODBC
Driver

Oterro

ODBC
Manager

Visual Basic

(includes various
techniques to
talk to ODBC

manager)
DAO, RDO,
ODBCDirect

API calls

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 6

Recycling Oterro

'Allocate statement handle
retcode = SQLAllocStmt(DBHandle, DBStmtHndl)

'Execute the command
SQLStatement = "UPDATE Product SET ListPrice = ListPrice * 1.1"
retcode = SQLExecDirect(DBStmtHndl, SQLStatement, SQL_NTS)

'Free the statement handle
retcode = SQLFreeStmt(DBStatementh, SQL_CLOSE)

'Close the database
retcode = SQLDisconnect(DBHandle)

'Free the connection handle
retcode = SQLFreeConnect(DBHandle)

'Free the environment handle
retcode = SQLFreeEnv(DBEnv)

The one key redeeming feature of this approach is that if you use compatible SQL commands,
you can take the same piece of Visual Basic and run it against another vendor’s database. In
reality, unless you are very careful, engine specific SQL dialects creep in and need to be
managed. For example SELECT … FROM … WHERE LIMIT = 1 obviously works in R:BASE but
does not in Microsoft SQL Server, in this case you need to use SELECT TOP 1 … FROM ….

However, if you plan for these dialects, database independent applications can be developed.

OLE DB

OLE DB tries to make things a little simpler. It
is positioned as Microsoft’s strategic low-level
interface to data across an organisation and is
designed to build on the success of ODBC. This
means you can also use OLE DB to access
information that is stored outside a database - in
other application files for example.

One key aspect of OLE DB, is that we
communicate with “Providers” using COM
(more about that later) and no longer need to
use the API we illustrated above.

Today, if you are very lucky, a “native” OLE DB provider will exist that “talks” directly to the
database (ORACLE and SQL Server being examples). For everyone else, a general purpose
provider exists that will communicate with an ODBC driver.

Within Visual Basic, instead of the plethora of choices for ODBC, there is just the one approach
Active Data Objects (ADO) that lets you control your OLE DB provider. Given this, the original
example can now be reduced to:

'Set up ADO command objects
Dim MyCommand As Command
Set MyCommand = New Command

© 2000 Aspen Software

Data Access
! OLE DB

CONCOMP.rb?

ODBC
Driver

Oterro

Visual Basic
with Active

Data Objects
(ADO)

OLE DB
Provider

for
ODBC

SQL Server
Oracle

….

Visual Basic
with Active

Data Objects
(ADO)

Data Specific
OLE DB
Provider

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 7

Recycling Oterro

'Connect & issue commend
With MyCommand

.Activeconnection = "Provider=MSDASQL.1;Data Source=ConComp"

.CommandText = "UPDATE Product SET ListPrice = ListPrice * 1.1"

.Execute
End With

'"Disconnect"
Set MyCommand = Nothing

COM

COM is the (Microsoft) framework that enables us
to create and use components. It lets us define a
“contract” with the users (other programs) of a
component. The contract defines what information
(Properties) can be read from or set in the
component and what operations (Methods) can be
carried out by the component.

It is a very much more structured and elaborate
way of doing something like:

RUN MyComp IN COMPNENT.APX USING …

In the case of COM, components can be written in “any”
language and can reside on the local machine or
anywhere on a network.

Depending on the nature of the COM component it will either be implemented as an ActiveX
EXE file, an ActiveX DLL file or an ActiveX Control (an OCX file). For Web Integration, IIS
applications will be implemented as a WebClass DLL file.

© 2000 Aspen Software

Component Integration
! COM

– Interface specification
– Communication between “lumps” of compiled

code
– Local or network based
– VB, C++, Visual Java, Delphi
– OCX & DLLs
– Expose an interface
– Allows componentisation

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 8

Recycling Oterro

Web Integration

The key thing to remember with Web enabling an
application is that there are lots of ways to do it.

If we use a Microsoft IIS as our web server we can
take advantage of Active Server Page (ASP)
technology to harness and reuse our components.

On its own, we could write VB script in our ASP
pages and use this to call COM objects that we
have created using Visual Basic. This has some
potential performance issues since an ASP page is
stored in clear text on the server and interpreted at run time. Also, the Microsoft development
environment for producing ASP pages (Visual InterDev) is not as fully featured as the Visual
Basic development environment.

There is another way, which is to just use ASP as a vehicle to start something known as a
WebClass. When a browser accesses a WebClass application, it requests an ASP page that
simply starts a compiled WebClass DLL. As the WebClass DLL will have been written in
Visual Basic, it can use other COM components to fetch data and apply business rules. It uses
this intelligence to take HTML “template” files and customise them “on the fly” with data and
application session specific information. This produces a final HTML file that is passed back to
the browser.

The beauty of this approach is that our intelligence is in the VB WebClass (which is just another
sort of COM object). Since it merges information into a template HTML file it also provides
good separation between data management and the presentation of the page to the user. VB
developers can produce WebClasses against raw HTML pages while the HTML authors design
the final pages. Indeed, HTML templates can be changed after the WebClass has been compiled
and deployed.

What Happened to Productivity?

All these technologies are very interesting, but
consist of lots of layers. Don’t you just end up
writing code that moves information backwards
and forwards between layers? Is this really rapid
application development!

As you will see Visual Basic comes with lots of
goodies to address this. So working with Oterro
you can drag and drop fields from the database
onto forms and you can even use Application
Wizards to create an initial VB application (which you subsequently edit).

© 2000 Aspen Software

Web Integration
! WebClasses

Web
Browser

IIS Web Server

ASP Engine

WebClass

Visual Basic

HTML
Templates

Data

COM
Objects

HTML
& Script

© 2000 Aspen Software

What Happened to Productivity?
! Use the VB Data Designer?

– Drag & drop fields onto a form
– Application development wizards

! Why bother?
! R:BASE is faster “from scratch”
! Change the rules

– Don’t do it from scratch
– Use “Building Blocks”

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 9

Recycling Oterro

To be blunt though, if you are going to
work this way, you might as well work
completely in an R:BASE
environment. If you are going to build
an application “from scratch”;
R:BASE will be quicker and more
productive.

To get the real benefit of Oterro and
Visual Basic, you will need to change
the rules and use “Building Blocks”.
Instead of building an application from
scratch, you are building it from tried
and tested parts. This leaves you more
time to focus on those bits of the
application that are unique to the
customer.

Building Blocks

So what exactly are these “Building Blocks”?

They are a combination of pre-built and tested
COM objects (OCXs and DLLs), sets of known
“standard” tables within our database and
additional standalone programs.

An important general feature of most of the
building blocks is that the properties and methods
of the objects and the contents of the “standard”
tables can be used to make the component seem
like part of an overall dedicated application.

You can either build these components yourself or buy them in from a third party.

The facilities the building blocks provide can range from a library of simple routines to a
complete and complex subsystem. You really are just limited by your imagination.

© 2000 Aspen Software

Building Blocks
! Pre built components
! “Standard” table structures
! COM objects
! Standalone programs
! Compiled but modifiable behaviour
! Simple to complex functions
! Limited by your imagination!

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 10

Recycling Oterro

Building Block Functions

The aims of the building blocks are to provide
functionality that we normally expect from a
complete environment such as R:BASE or to hide
complexities of the underlying technology we are
using.

For example, we could implement a COM based
library of ODBC database access routines. So the
earlier example of ODBC code could be simplified
to:

' Initialise the database engine
DBEngineInit()
'Connect
DbConnect()

'Execute the command
SQLStatement = "UPDATE Product SET ListPrice = ListPrice * 1.1"
DBSQLUpdate(DBHandle, DBStmtHndl, SQLStatement)

'Close the database
DbClose()
'Clear the DB Engine resource
DBEngineClose

Other building blocks could provide the
rich functionality of an application specific
“WHERE” builder, give users an easy way
of requesting and printing reports or
provide a simple way for them to control
configuration settings in their application.

A highly complex building block could be
the implementation of a complete contact management subsystem.

Examples of standalone program building blocks would be a program that carries out a robust
database RELOAD process or a program that copies and compresses database files as part of a
backup process.

One element of R:BASE that we take for granted in an application that is also a prime candidate
for a building block, is a way of maintaining the table of reference data that usually accompanies
an application – the sort of table that you might want to maintain with EDIT ALL FROM …

© 2000 Aspen Software

Building Block Functions
! Simplified Data Access
! Simple Function Library
! Application Friendly “WHERE” builder
! Report Production Control
! Reference Table Maintenance
! Database RELOAD & Backup
! Job Automation
! Contact Management

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 11

Recycling Oterro

Techniques

This brings us to some key techniques to help us
control the behaviour of our building blocks and
to maximise their reusability.

Perhaps one of the most important techniques
(not just applicable to Visual Basic and Oterro) is
the use of table driving. As mentioned earlier,
we use the data in a table to control what the
building block should do.

Also, to maximise reusability, it is vital to group
appropriate facilities together in components. Typically, components would be split into tiers,
one tier being specific to User Interfaces of a particular type, another providing the business and
application intelligence (independently of the user interface) while a third could provide the low
level data access routines.

Another less important, though useful technique, is having “code that writes code” which is then
executed. So in R:BASE we could use something similar to:

OUTPUT vTempFile
WRITE ’SET VAR vlogDir TEXT = ’’\\AS-Server-01\App\LogFiles’’’
OUTPUT SCREEN
RUN .vTempFile

When run, this would declare and assign the string value to the variable vlogDir. Unfortunately,
Visual Basic applications usually run as compiled executable programs and so do not provide
this interpretive capability. You can however use code to write code with WebClasses when
producing JavaScript to run in a browser. As we will see later, Visual Basic enables us to
change the nature of a form at runtime. This means that the more adventurous developers could
produce their own simple interpretive routine that could then be fed code generated at runtime by
the Visual Basic program. This is an ideal way to produce simple questionnaire forms that vary
according to information held within the database.

Before looking at table driving and tiered code in more detail, another useful technique available
within Visual Basic is the ability to compartmentalise the storage of a program’s strings and
images within a “resource file” which then forms part of the EXE file or a COM component.
This enables you to isolate client specific splash images and logos within a COM component.
You can then have client specific COM components holding different images that alter the look
of the overall application without the need to recompile.

© 2000 Aspen Software

Techniques
! Table driving

– Data tells component what to do
! Split components into tiers

– User interface
– Application/business rules
– Data access

$ Code to write code
$ Resource files

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 12

Recycling Oterro

Table Driving – Application Configuration

A simple example of table driving is the following
structure used to hold configuration values for an
application.

As you can see, the table holds columns for the name
of our configuration variable, a description and
details concerning its type size and use. A final
column then holds the value to be assigned to the
variable.

In an application that is using both R:BASE and
Visual Basic to access the database, the R:BASE
application can use either SELECT … INTO for individual values or OUTPUT to a file and use a
selection to build a sequence of “SET VARS” which could then be run to create the variables.

The Visual Basic application would use a
library routine from a component to
access an individual configuration value.
Eg:

vLogDir = GetConfigValue("vLogDir")

As illustrated, within the Visual Basic
component, a form would also be
available to let users maintain the
configuration details for their system.

Table Driving – Reference Tables

As Visual Basic will let us change the characteristics
of a form on the fly – you can build a common form
and then alter it at runtime according to information
retrieved from the database.

So if we hold details of the tables and the columns we
want to maintain, we can then alter our form to display
and update complete tables.

You could of course read this information from the
SYSTABLE and SYSCOLUMNS structures in
R:BASE or use ADO “properties” to find out these details. However, it may not be prudent to
let a user change data in all the tables in the database. Holding your own structures does mean
that you have more control over what the user can and cannot do. It also makes the component
more portable allowing it to be easily implemented against other types of database engines.

© 2000 Aspen Software

Table Driving – App Configuration

\\AS-Server-
01\App\LogFiles

256DIRTEXTFolder for log
files

vLogDir

Let Me in!4PWDTEXTDefault new
user password

vDefPassword

4

varLen

YES

varValuevarUse

TEXTCapitalise
company
names

vCompanyCase

varTypevarDescvarName

! utConfig (Sample Configuration Table)
– Variable name & description
– Type, size & special use
– Value

© 2000 Aspen Software

Table Driving - Reference Tables
! utTableControl

– Table name & description
– Names of columns for who &

when changed
– Replication & browsing details

Table Details

Column Details

! utColumnControl
– Column names, types &

descriptions
– Column FK details
– Replication & browsing details

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 13

Recycling Oterro

Table Driving – Reference Tables

As you will see, these structures allow us to control
a powerful application maintenance tool. Tables
and columns can then be easily added or removed
from the maintenance screens.

Tiered Code

If we structure our components into tiers, typically
to split the User Interface, Business Application
logic and Data Access methods we can then reuse
our components in a number of environments.

The reference table component we have just seen
splits the table decoding and data access
components away from the code that deals with
display in a Windows environment. When we
come to implement similar functionality for a Web
enabled application, we just need to produce a Web
user interface element that uses the existing back tier components.

Tiered Code

So finally we see the equivalent Web
functionality being delivered via a WebClass
using the component files that have already
been developed for use with our Windows
application.

© 2000 Aspen Software

Table Driving - Reference Tables

© 2000 Aspen Software

! To web browser

Tiered Code

VB
Application

Windows
Display

Component

Driver Table
Decoding

Component

Data Access
Component

Web browser
accessing

ASP &
WebClass

Web
Display

Component

! Allows re-use from Windows

© 2000 Aspen Software

Tiered Code

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 14

Recycling Oterro

Challenges!

As a “mere mortal application developer” I find
it very exciting to be able to develop and
deliver such incredible reusability with Oterro
and Visual Basic.

However, as with all things, it is not without its
challenges. The biggest hurdle, if you have not
already done so, is the investment needed to
learn Visual Basic. Although if you are
comfortable with complex programming tasks
within R:BASE and are happy using an event
driven approach such as that needed for
R:BASE Entry Exit Procedures, then with the right resources, acquiring VB skills will not be
daunting.

COM on the other hand, can be complicated (no pun intended) as we have an interface that
allows components produced in different languages to communicate with each other on a local
machine and across a network! Fortunately, Visual Basic does most of the hard work for you,
thus simplifying the production of COM objects and, of course, there is a wealth of electronic
and printed information readily available to help you.

When producing your COM objects, an area that needs careful consideration is the nature of the
interface that your object provides – this is your contract with the outside world as to what your
component will do. If, after releasing and deploying your component you then decide to
“enhance” elements of the existing interface, add another parameter to an existing method for
example, then you will have broken your contract! More critically, you will have broken the
interface of your component. If you then replace the live “old” versions of your components
with this new version, then applications will no longer be able to use the facilities of the
component and will not work! (You will either need to recompile applications to use the version
of the interface provided by this new component or, more usually, implement enhancements to
the component as a completely new method.)

Finally, if you buy in components, which is usual, you are then involved in the delivery of a
multi vendor product solution. When deploying, depending on your component provider this can
either be a blessing or a challenge!

© 2000 Aspen Software

Challenges!
! Acquiring the skills
! COM can be complicated
! Versioning and interface compatibility
! Multi-vendor product solutions

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 15

Recycling Oterro

What does it mean for R:BASE?

For any serious developer, we believe that the
challenges are dwarfed by the benefits for both
developers and customers when using these
techniques.

Key to this approach is that you can give your
customers almost whatever they want. If a pure
R:BASE solution is not to their liking, then you
can keep the power of R:BASE under the hood
with Oterro and use Visual Basic. Having
components available will speed the development of highly functional Windows and Web
applications. The ability to rapidly add in specialised facilities via a third party component can
give you the real advantages of a multi-vendor product solution – allowing you to choose the
“best of breed” (as you do with the Oterro engine!) – and not settle for a compromised or
inhibited application.

Where you have existing installations, the ability to use Oterro against databases that are already
supporting R:BASE for Windows and R:BASE for DOS applications can open new territory and
extend the life and reach of the system. For users who require specific facilities or interfaces that
could not be provided by R:BASE alone, a dedicated Visual Basic and Oterro application can be
developed to give those users exactly what they need, without detracting from the existing
R:BASE applications.

Finally, for a customer it removes the fear of being locked in to one particular database vendor
and having nowhere to go if their business exceeds the capabilities of the database engine. If
your products and services are good then the removal of this “lock in” is not to be feared. From
the R:BASE point of view I see this as an advantage, Oterro provides the engine of first choice,
and customer’s fears about it not being able to grow are allayed. Also, if you need to develop
against another database engine then you can, using your existing components and giving you
the capability to move the customer to Oterro when the opportunity arises.

Using Oterro with Visual Basic will enable us as R:BASE developers to extend our reach and
also let us welcome Visual Basic developers who want to benefit from the power of Oterro.

© 2000 Aspen Software

What does it mean for R:BASE?
! Extends customer choice
! Extends functionality available to R:BASE
! Multi-vendor product solutions
! Can extend life of existing systems
! Removes database lock in
! Extends developer community

A S Aspen
Software

Millennial R:BASE Developers’ Conference
© 2000 Aspen Software

Page 16

Recycling Oterro

What Next?

We have covered a lot of ground in this paper. Mastering the technologies and techniques
discussed will enable you to re-use and capitalise on your skills. To find out more about the
topics we have covered you may want try the following resources: (Please remember that this is
not an exhaustive list and links may change over time.)

Oterro
% You can find out more from www.oterro2000.com/Products/Oterro.htm

Visual Basic and COM
% Microsoft Visual Basic (Deluxe Learning Edition) Michael Halveson, Microsoft Press;

ISBN: 1572318732 is a complete learning package and includes a copy of Visual Basic 6
Learning Edition.

% msdn.microsoft.com/vbasic/ is the official starting point for Microsoft resources covering
Visual Basic. The MSDN library CD subscription product is also an excellent resource
with immediate access to over 15.GB of information (see
msdn.microsoft.com/subscriptions/prodinfo/overview.asp)

% Carl & Gary’s VB Home Page www.cgvb.com is an excellent source of “non biased”
Visual Basic information and links – for new and expert users alike.

% Doing Objects in Visual Basic 6 Deborah Kurata, Sams Publishing; ISBN: 1562765779.
This introduces object oriented techniques and covers multi tier development. (We used
the VB5 version of this book, which is no longer available. Some of the reader
comments at Amazon may indicate better books to buy.)

% www.microsoft.com/com is the definitive site for information about COM
% COM/DCOM Blue Book Nathan Wallace, Coriolis; ISBN 1576104095. Not for the faint

hearted, this is a highly recommended explanation of COM and Distributed COM.
OLE DB & ODBC
% Oterro Manual. In version 1.1 this covered all of the ODBC calls supported and how to

use them. If you are going to be using ADO and OLE DB then you don’t need to worry
about ODBC calls.

% www.microsoft.com/data is the starting point for all information concerning Microsoft’s
data access technologies.

WebClasses & ASP
% WebClasses from Scratch Jesse Liberty, QUE; ISBN: 0789721260. A superb practical

introduction to using all of the relevant technologies to produce and deploy an WebClass
application.

% VB Developer’s Guide to ASP & IIS AR Jones, Sybex International; ISBN: 0782125573.
If you are doing WebClasses this is another “must have” leading on from WebClasses
from Scratch and providing more detail concerning key areas.

Other Resources
% www.devx.com is a very useful site for answering “how do I” type questions, not just for

Visual Basic but for other languages as well (including JavaScript).
% www.componentsource.com is the online source for finding and purchasing components,

there is also an area dedicated to developers producing components.
% info@aspensoftware.co.uk if you have any questions about this subject.

http://www.oterro2000.com/Products/Oterro.htm
http://msdn.microsoft.com/vbasic
http://msdn.microsoft.com/subscriptions/prodinfo/overview.asp
http://www.cgvb.com/
http://www.microsoft.com/com
http://www.microsoft.com/data
http://www.devx.com/
http://www.componentsource.com/
mailto:info@aspensoftware.co.uk

	Summary
	Languages
	Re Use – What Can We Do?
	Note Tracking Subsystem
	Core Technologies
	Data Access
	OLE DB
	COM
	Web Integration
	What Happened to Productivity?
	Building Blocks
	Building Block Functions
	Techniques
	Table Driving – Application Configuration
	Table Driving – Reference Tables
	Table Driving – Reference Tables
	Tiered Code
	Tiered Code
	Challenges!
	What does it mean for R:BASE?
	What Next?
	
	
	Oterro
	Visual Basic and COM
	OLE DB & ODBC
	WebClasses & ASP
	Other Resources

