

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 1

Recycled Designs

Recycled Designs

Neil Smith & Suzy Smith
Aspen Software

Summary

Consider….

♦ How do I make an R:BASE report available on demand from my web site?
♦ How do I email a sales report for the last week to 100 sales managers every Monday

morning?
♦ How do I make sure my system collects and processes its mission critical feed files every

morning at 3:00 am?
♦ How do I make sure my R:BASE databases are correctly reloaded and backed up every

night?
♦ How do I manage the replication of information across an international network of

R:BASE databases?

These are the typical challenges that can form component parts of many development projects.
Since the success of the majority of today’s businesses is inextricably linked to the capabilities of
their IT systems, clients often demand such facilities.

“Recycled Designs” will show how we have used an existing design concept to meet these
challenges. We will share a design theme (based on ideas from an early Developer
Conference) that has formed and continues to form the basis of many successful Aspen
Software solutions. We will explain how we have used R:BASE, Oterro and web access
technology with this design and implementation approach to achieve these capabilities and
more.

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 2

Recycled Designs

Challenges

As developers, we spend our time architecting
solutions to our clients’ business problems and
opportunities. Indeed the success of the majority
of today’s businesses is inextricably linked to the
capabilities of their IT systems.

As a result of the pervasiveness of the Internet,
(and the marketing departments of many
organisations) today’s IT users have high
expectations of the applications they will be
delivered. Yet, in the current business climate, these applications are supposed be developed and
deployed with breathtaking speed! Furthermore, their build quality has to cope with the
demands of increased operation as more and more business move closer to 24-hour operation!

Finally (and not unreasonably) the people who are paying for these applications expect them to
work and to deliver real returns to their businesses!

So, we have to produce ever more sophisticated solutions, that satisfy problems of ever
increasing complexity, quickly and cost effectively. Let’s consider elements of some real life
examples.

A web enabled database application, that lets
web users select and run reports that are
normally available on the LAN based version of
the system.

As well as seeing their reports immediately via
their browser, they can have the results
automatically emailed to them - every week if
they want.

How do we do that?

A Visual Basic and Oterro CRM system that is
available at offices distributed nationally and
internationally, each with heavily used databases
and minimal local IT support.

The system carries out daily local database
backups & reloads and, more importantly,
performs the necessary processing to replicate
data around all offices before start of business
each day.

How have we been doing that for the past nine
years?

Challenges

� User expectation
� Solution sophistication
� Speed of business change
� 24 x 7 operation
� Provide real return on investment

Web Enabled Reporting

� Specialised web enabled application
� Diverse user reporting requirements
� Users select & request their own reports
� Ad-hoc & regularly scheduled reports
� Fully automated report distribution by email

Unattended Database Maintenance

� High usage distributed sales office
system

� No local IT support
� Fully automated reload & backup
� Fully automated data replication

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 3

Recycled Designs

An organisation that provides a high value
added, outsourced service to major IT vendors.
They have a range of client contacts in different
companies who regularly need to be kept up to
date on the performance of this service.
Someone, who could be doing better things,
used to spend several days a month preparing
and emailing reports.

Now this is done automatically and the clients
can choose, when and how this information is
delivered.

How does it work?

Users of a specialised business development
system purchase weekly data files of research &
live opportunity data from a variety of research
houses.

This information is published 'out of hours' by
suppliers, either for download or email delivery.

The information needs to be captured, processed
against existing opportunity data and be ready
for use in the client’s system at the start of each
business day.

How can that be achieved?

Key partners in a professional consulting firm
require regular updates and notification of their
inbound voice messages (from a variety of
sources).

This information is sent to them reliably, in a
timely and discrete manner via GSM SMS text
messaging 'where ever' they are (nationally or
internationally).

How?

Automated Report Production

� High value add – outsource service
� Extensive client reporting requirements
� Fully automated report generation &

distribution

Data Loading & Processing

� Business generation data feeds
� Time sensitive data
� Immediate automated processing,

matching and sales lead generation
� Ready at the start of each business day

Message Consolidation

� Multiple inbound voice messaging
� Unattended operation
� Timely and discrete notification
� Internationally available

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 4

Recycled Designs

A Recycled Design

All of these snippets of systems share a common
design theme. They are based on an idea that was
presented at the 1992 R:BASE Explosion, (The
Network that Never Sleeps 1).

Key elements of the theme are that a “queue” is
used to allow instructions to be passed between
cooperating programs. “Client programs” request
actions that are then carried out by “server
programs”. This has the advantage of allowing the
cooperating systems to carry out actions in parallel. It also provides shared access to a common
processing resource.

In spite of its heritage, the design theme has stood the test of time and is probably more useful
and effective today than it ever was.

An important point to note about this approach
is that the clients (the programs or parts of
programs that want an action carried out) would
typically be located on different machines to the
server or servers that carry out the actions.
Depending how the queue is implemented the
machines could be on same LAN or on opposite
sides of the globe.

Another facet is that the “server” application
itself may call on other programs (usually on its
own machine) to assist in fulfilling the action
requested by the client.

This approach can also be a great aid to rapid deployment. It is quite possible to build a general-
purpose queue that uses component software in the client to make the requests. The requests are
then carried out by a standard “server”. This then uses additional purpose built programs to
carry out any application specific actions.

We will examine this in more detail as we look at the core elements of this design.

A Recycled Design

� Shared design approach
� Presented at the 1992 R:BASE Explosion
� Key Features

– Use of Queues
– Data as an instruction
– Clients request actions
– Servers carry actions out
– Workload distribution
– Resource sharing

Queues, Clients & Servers
Client

applications put
requests for

action in queue

Server
applications

process requests.
(Runs other
programs as

required)

REQUEST
QUEUE

‘Client’

‘Server’

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 5

Recycled Designs

The Queue

The “queue” is the main channel of communication
between the clients and servers. In essence each
entry in the queue is an instruction to a server to
carry out some form of action.

Depending on the implementation, the “queue” can
take a number of formats:
¾ Standard Queue – this is where the first

item to enter the queue is processed first
(first-in, first-out).

¾ Stack – this is where the last item to enter the queue is processed first (last-in first, out).
¾ Sorted List – this is where items are given a key on entry to the queue, they are

processed according to value of their key, or a sort order based on that value.

In the vast majority of examples we are considering, the queue is in reality a “sorted list”. If we
use a date and time entry as the key to the list it enables the client to request when a particular
instruction should be carried out. This is the approach we take for our general-purpose queue.

In this case the queue is simply a table. The core
queue columns are:
¾ RequestID – Our unique identifier for the

request.
¾ ReqStat – A simple status for the request,

for example this tells us whether it is ready
to be actioned, currently active or should be
ignored.

¾ StartTime – This confirms the earliest time
(UTC/GMT) that the request should be
actioned.

¾ TaskType – The task type confirms what
action should be carried out. This is used in

conjunction with the “TaskInfo” table to confirm what a server should do to carry out the
action.

¾ Schedule, Schinfo & SchTime – These columns are used to confirm what, if anything
should happen to the request after it has been processed. They are used by the server to
reschedule the request. This allows requests to be carried out at a variety of repeated
intervals.

This core queue information is typically supplemented by additional items such as user entered
descriptions, time of last processing and ‘trigger’ information to allow ‘events’ to be raised that
themselves can be used to schedule further requests.

The Queue

� Communication channel
� What to do
� When to do it (for time related activity)

Queue Structure - Basics

� What to do (TaskType + supporting table)
� When to do it (StartTime)
� How to reschedule (Schedule, SchInfo, SchTime)
� Further information (Descriptions, report names, email

addresses, run statistics etc...)

1

Mon, Tue,
Wed, Thu,

Fri, Sat,
Sun

Fri

SchInfo
(Text 42)

01/05/2002
06:00

08/04/2002
03:00

19/04/2002
09:00

StartTime
(DateTime)

06:00MONTHLYREPORTReady20000209

03:00DAILYRELOADReady20000208

09:00

SchTime
(Time)

DAILY

Schedule
(Text 16)

REPORTReady20000009

TaskType
(Text 16)

ReqStat
(Text 9)

RequestID
(Integer)

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 6

Recycled Designs

Two further tables are also used to support the basic queue structure:
¾ TaskInfo – As mentioned above, this table details what a “server” should do to fulfil a

request. Typically, along with a description of the “task”, this confirms how the task is
started and what it may produce. For example this may be the name and location of an
R:BASE command file or the command line to invoke a custom program that produces a file
that should be returned to the “client”.

¾ RequestInfo – In order to run a particular “task” and process any output it may produce,
additional information is frequently required:

� Environment Details – For an R:BASE command file, for example, there
may need to be a number of variables declared and assigned that are expected
by the command file. Information is needed (the variable name, type and
value) to allow these variables to be set up before the command file is run.
For a Crystal Report, details will be needed of the actual report file to run, the
database connection that should be used, the SQL required for the selection
and the required format of the resulting report file.

� Return Details – Many requests involve the production and return of some
information (a report for example). As well as just saving this information as a
file somewhere on a server, email addresses can also be held that are then
used to return the results to the user who made the original request.

In addition to the above, further support tables can be implemented to hold statistical and
management information about requests that have been carried out.

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 7

Recycled Designs

The Client

The “client” is the part of the design that most
users see. In its simplest form, all it needs to do is
insert a correctly formatted entry into the queue.

Depending on requirements, the “client” can be
used to provide additional features to enhance the
benefit users receive from the facility. It can be
used to check for the completion of a user’s request
and provide an estimated completion time for a
request that is currently being carried out.
“Management users” can also be given access to reporting capabilities to show the type and
frequency of the requests being made.

From a development point of view, perhaps the greatest power of this particular design theme
comes from the “decoupling” of the programs used for the “client” and “server” elements.

When new technologies become available, client
programs can be deployed that use these
technologies and insert requests into the queue.
Yet the existing servers will still perform the
requests!

As illustrated, clients produced in character mode,
Windows and web browser interfaces can all be
used to insert requests into a queue.

In the examples shown, Microsoft Visual Basic and
Oterro have been used to produce ActiveX controls
that can be used in a Windows environment to
initiate requests. These ActiveX controls also use custom DLLs that can be incorporated into
Microsoft IIS ASP web server applications to enable requests to be made from a web site.
(These techniques are discussed in more detail in the Millennial R:BASE Developers’
Conference presentation – Recycled Oterro 2.)

The Client

� Inserts requests in queue
� Checks for result (optional)
� Provides status of request
� Management reporting (optional)

Client Samples

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 8

Recycled Designs

The Server

The “server” is probably the most technically
demanding element of the design and the part that
fewest people see.

At its simplest, the “server” is a stand-alone
program (an executable, or even R:BASE running
a specially constructed command file). The
“server” fetches the request from the queue, does
what is required to ‘action’ the request, ensures the
results get back to the original user and, if
necessary, reschedules the request to run again.

For a successful implementation of this design theme, the “server” must be robust and available
to carry out requests that are passed to it. If one “server” is being used to service several
hundred clients then failure at this point can have dramatic consequences.

If required, the server may be implemented as an R:BASE application. For the period 1992 –
1996 we successfully used an R:BASE for DOS version of a “server” – which had as its clients
programs produced with Visual Basic and the SQL Engine for R:BASE (the precursor to Oterro).

Today, our preferred choice of environments for a general purpose “server” is Visual Basic and
Oterro. As will be covered below, this is predominantly due to the level of access that Visual
Basic gives to the Windows operating system in order to control other programs that the “server”
may use.

Server Processing Whatever is used to develop the “server”, when working with a

time based queue, the technique for finding out what to do next is
the same.

Check On a regular basis (every few seconds) the “server” checks to see

whether a request needs to be carried out, eg:

SELECT RequestId, TaskType FROM RegularQ
WHERE
StartTime < DATETIME(.#DATE, .#TIME)
AND ReqStat = ‘READY’
ORDER BY StartTime

Fetch Information needed to carry out the request is then retrieved based

on the value of ‘TaskType’ placed in the request. Some requests,
such as general housekeeping and result purging for example,
would be internal to the “server” and would not require the use of
any external support programs. Typically though, most requests in
a general-purpose environment would need the services of
additional programs (as defined via ‘Tasktype’) in order to carry
out the request.

The Server

� Fetches request
� Runs ‘task’ associated with request
� Routes results of request

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 9

Recycled Designs

Action Assuming that an external program is going to be used to carry out
the request the “command line” information fetched for the
‘TaskType’ would be used to start the program. Typically, to
ensure that any files produced by the external program are
available for return to the original user, the command line would
also be altered to pass relevant file names.

 The program is then started using Windows API call

“CreateProcess”.

Wait The “server” now waits for the external program to complete. It

loops using the “WaitForSingleObject” API call to check whether
the external program is still running and the “Sleep” API call to
suspend itself before it loops again.

Clean Up Once the external program has completed, any resulting files may

be emailed to the required recipients. Other details of the results of
the request (eg actual processing time, log files etc) may be stored
for management reporting.

Reschedule If the request is to be run again, the scheduling information that

was placed in the queue can now be used to derive the next date
and time at which it should run. The ‘StartTime’ for the queue
entry is then updated to reflect this new date and time. This
rescheduling can be as flexible as required, for example allowing
items to run on particular days of the week or particular days of the
month. It can also support items that are run on a periodic basis,
eg every ‘N’ days or every ‘N’ hours minutes and seconds.

Introducing a notion of ‘event based’ scheduling can also produce
even more flexibility. This means that when one request is
finished, an event can be “raised” which then allows requests that
have been waiting for that event to also be run.

Repeat On completion of the rescheduling, the “server” may optionally

wait for a number of seconds (to avoid network overloading)
before repeating the cycle again.

This illustration
shows a general-
purpose “server”
waiting for
completion of an
external program
that is being used
to reload an
R:BASE database.

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 10

Recycled Designs

Key Benefits

From a user’s point of view, the major benefit that
a design theme such as this provides is the
empowerment to automatically initiate key
business processes. When combined with
reporting requests, users can automatically
distribute key business information to interested
parties without the need for further IT
development.

For a developer, the simplicity of the design and
modular use of “client” and “server” programs leads to a flexible and robust solution. If a
general-purpose approach is used, business specific functions can be added simply by the
development of purpose built programs for use by “servers”. By their nature, and thanks to the
general-purpose “infrastructure”, these additional purpose built programs tend to be more
straightforward and quicker to develop.

By offloading the processing that would normally be carried out on a users PC to the “server”,
time is no longer lost while a user’s PC is slowed waiting for the production of some complex
task. Conversely, since any machine that can run the “server” program can also process
requests; user’s PCs may also be used, out of hours, as “servers” to carry out requests.

One of the greatest benefits of the approach
comes from its use in a cross platform
environment and the access it gives to a
common “back end” set of “server” programs.

As we have seen, character mode, Windows
and browser based clients can all provide access
to a request queue, and hence the “server”. As
we shall see when we discuss extensions to the
theme, we can also implement “email based”
request entry into the queue – for even greater
flexibility.

Key Benefits

� User empowerment
� Simple & flexible
� Robustness
� Quick deployment
� Management & load control
� Shared access to common ‘back end’
� Cross platform support

Shared/Cross Platform Access

REQUEST
QUEUE

DOS

Windows

Web

Email

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 11

Recycled Designs

Building Your Own

As we have mentioned, “clients” and “server”
programs in this recycled design can be produced
with a number of programming environments.

Whatever environment you may want to use to
implement this theme. A key area of attention
should be how your “server” programs are
implemented. If they are completely self-
contained, or if they use a general-purpose
approach and run additional supporting programs
then you need to check for any “bad behaviour” that might take place when the “server” is
running. Typically these programs run on PCs rarely visited by human beings, so a “server”
program with an open dialog asking for someone to press a key to continue may wait for a very
long time before the request is finished. Your “server” and supporting programs should be able
to run entirely without any user intervention.

Other things to consider, particularly on the machines used to run the “server” programs, are how
to cope with the results of very long periods of unattended operation. Can your main “server”
run for many months? Program memory leaks, in particular, can bring a PC to a halt after
periods of sustained operation. What happens when a “server” machine restarts after a power
failure? How do you make sure your “server” programs are restarted? 3 What happens to
requests that should have been processed while the power was down?

User empowerment is a wonderful thing but if someone can make a request to produce a report
for each of the two million transactions in your database then they probably will! If they are
allowed to give their request a free format description then they will probably (intentionally or
unintentionally) use every “illegal” character imaginable and somewhere along the line try to put
a 1000 character text string into a field meant to hold 10 characters! Both your “client” and
“server” programs need to have strategies to deal with these issues.

Another challenge is recreating the environment for the “server” program to carry out a request.
Frequently, a request will need to be supplemented by additional information (eg for a report;
what report should run and what selection should be used along with other user supplied
information required in the production process). This information will typically need to be
gathered by the “client” at the time the user makes a request, stored in a supplementary queue
table, and rebuilt when the “server” program actions the request.

A similar problem also needs to be addressed if the request runs an R:BASE command file, any
variables set up when the user issued the request from the “client” program may also need to be
regenerated when the “server” program actions the request. (One technique to achieve this to
carry out a “SHOW VAR” redirected into a file and then use a program to convert this to a
sequence of “SET VAR” commands that is then run to initialise the variables.)

If you are giving your users the ability to request and schedule reports that include date based
selections, you will also need to give them a facility to select date based information on a relative
basis (for example ‘Today’, ‘Yesterday’, ‘This Week’, ’Next Week’, ‘Last N days’, ‘Next N
days’ etc). This will ensure that if their reports are meant to cover a moving time window, then
the correct time frame will be selected whenever the report is produced.

Building Your Own - Issues

� Bad behaviour!
� Expecting the unexpected
� Exception notification
� Recreating an environment
� Recreating an R:BASE environment
� Date based selections

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 12

Recycled Designs

Other Choices

If you just need to make a task run at predefined
times, then two task schedulers are available within
Windows. If you are using Windows NT/2000/XP,
a command line utility “AT” and its “friendlier”
graphical interface “WinAT” are available to
schedule tasks to run on the PC or if you have
appropriate privilege, a remote PC.

Microsoft also has another scheduler that provides
a common scheduling interface across Windows
9x/ME/NT/2000/XP. This also includes a COM
object interface that may be manipulated programmatically.

One of the challenges that you may encounter when using these facilities under Windows
NT/2000/XP is that when a task runs underneath the scheduler, it may not run with the user
privileges you would expect if you were to run the task interactively!

For programming in a Visual Basic environment, Microsoft provide a Message Queuing product
(MSMQ) which provides a full, robust and sophisticated queuing environment that can be
accessed by the cooperating programs you develop.

As you will see in “How Do I Find Out More?” there are also a number of third party schedulers
available, indeed some anti-virus suites also include a scheduler that you can use to set tasks to
run on your PC.

Other Choices

� Operating system support
– AT (& WinAT)

– Windows Task Scheduler

– Microsoft Message Queue

� Third - party schedulers

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 13

Recycled Designs

Extending the Design

The design theme we have been reviewing is
however, much more than just making a program
run on a PC at a given time. As we have hinted,
we can extend the design to given an even more
powerful solution.

Particular areas that can be extended are the
location of the queue and how it is structured. As
we will see below, we can extend a queue to
include the mailbox associated with an email
address. In this case, a “client” can become
anyone capable of sending an email to that address! For specialised applications, rather than
adapting a general-purpose structure, the information held within the queue can also be modified
to reflect the needs of the cooperating “clients” and “servers”.

The following real life examples show what can be achieved by extending the design:

A service organisation uses email & fax to
confirm a complex service provision. There
may be an interchange of several emails (and
faxes) between several interested parties before
the service may be confirmed.

All of this correspondence needs to be filed
automatically, be readily accessible from their
mainstream database application and, in certain
cases, automatic updates also need to be made in
the database application to confirm that a
response has received.

To achieve this, a general-purpose “server” program runs an external custom Visual Basic
“Filer” program at 15-minute intervals during the “business day”. Driven by a list of Microsoft
Exchange mailbox names held within the database application, the “Filer” program scans the
mailboxes, identifies the service contract to which any email applies, carries out any applicable
updates to the service contract information held within the database, moves the email to a
structured public folder area within the Exchange Server and then creates a “link” from the
database to the filed item within the Exchange Server.

When in the main database application and viewing details of a particular service contract, users
may access and “open” the filed email with just one click.

Extending the Design

� Queue location (eg mailboxes)
� Queue structures (specialised data)

� Examples
– Automated “Filing”
– Bulk Email Management
– Telephone Switch Access

Automated “Filing”

� Complex service provider
� Multiple fax and email interchange to confirm
� Automated Exchange filing and linking to

mainstream database application
� Regularly scheduled “server” scan of email

queues

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 14

Recycled Designs

The administration team of an IT service
provider has to review lists of particular contract
contacts in order to approve the transmission of
sets of personalised emails.

The emails themselves are highly tailored to the
recipient and may also include complex
documents (again extensively personalised) as
attachments.

However once the administrator has approved a
particular contact, they do not need to play any

further part in the email and attachment production - they want to get on with other jobs without
their PC being slowed down. And yet.... they do want to know when all of the personalised
email has been despatched.

To achieve this, once they have finished reviewing their list, the program that has been used to
carry out the review process, uses an ActiveX DLL to insert a “one off” request for an email
transmission into a general-purpose queue. Elsewhere on the network, a general-purpose
“server” program carries out the request by using a custom Visual Basic “Bulk Emailer”
program to process the list, generate the attachments, send the emails and update the main
database application. On completion, the general-purpose “server” emails the “Bulk Emailer”
log to the user to confirm the operation.

A telephone company needs to give their
Customer Services Representatives (CSRS)
access to highly expensive & complex 'switch
terminals’ to interrogate telephone switches in
order to answer routine customer enquiries about
their telephone connections.

These 'switch terminals’ are expensive, use an
unfriendly command line interface and are
potentially open to abuse (eg setting up free calls
for a subscriber).

The need for the switch terminals has been

removed and CSRs now have an easy to use application that provides a safe and efficient way to
get the required information from the telephone switch (with none of the drawbacks).

This is achieved through the use of a specialised queue approach. A customised Visual Basic
client program is used by the CSRs to insert the request and telephone number into the queue.
Several hundred miles away, a specialised “server” processes these requests and then selects a
further specialised program to interrogate the telephone switch and return the appropriate
information. The “server” translates the information into a form understandable to the CSR and
updates the queue entry with these details. Meanwhile, the “client” program waits for the
response to be entered into the queue, displaying it to the CSR when it is available.

Bulk Email Management

� Highly personalised email & attachments
� Manual approval process
� Automated production & despatch
� Notification of completion
� Queue based email list with immediate

production and despatch by “server”

Telephone Switch Access

� Telco call centre
� Interrogation of telephone switches by call

handlers
� Removal of specialised switch terminals
� Transparent queue based access via “client”,

“server” and specialised database queue.

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 15

Recycled Designs

Conclusions

What can we conclude from our recycled designs?

Generally I believe we should all be open minded
and willing to consider and use the ideas of others.
Blended with our own experiences we can all adapt
these to our own ways of working to give even
better results more quickly. Also, as time and
developments progress, we shouldn’t be afraid to
revisit past solutions and see what we can adapt
and reuse from those experiences.

Specifically, I hope some of the things we have discussed will encourage you to consider using
your database to implement queues between cooperating programs. It may just be the solution
you need to solve a particularly difficult problem.

Finally, whatever you are going to do, have at least one way of easily scheduling programs
available in your toolkit – as we have seen, you will be surprised how useful it can be.

Conclusions

� Adapt the ideas’ of others

� Adapt your own ideas

� Consider queue based approaches

� Have a “scheduler” in your toolkit

A S Aspen
Software

2002 R:BASE Developers’ Conference

Page 16

Recycled Designs

How do I find out more?

To find out more about the themes we have covered you may want try the following resources:
(Please remember that this is not an exhaustive list and links may change over time. Also the
inclusion or exclusion of any third party scheduler in the list below does not indicate any form or
recommendation.)

Oterro & Visual Basic
9 You can find out more from www.oterro2000.com/Products/Oterro.htm
9 Additional references can also be found from the paper available at

www.aspensoftware.co.uk/RBASE/otrecycle.htm
Windows API
9 Information concerning the ‘CreateProcess’, ‘WaitForSingleObject’ and ‘Sleep’ API

calls can be found from the excellent publication Visual Basic Programmers Guide to the
Win 32 API, Daniel Appleman SAMS Publishing ISBN: 0-672-31590-4

9 Other online sources include
www.allapi.net/apilist/apifunction.php?apifunction=CreateProcess (CreateProcess),
www.vbapi.com/ref/w/waitforsingleobject.html (WaitForSingleObject) and
www.allapi.net/apilist/apifunction.php?apifunction=Sleep (Sleep).

Operating System Support
9 AT & WinAT: www.ntfaq.com/Articles/Index.cfm?ArticleID=15153 along with

Windows Online Help
9 Windows Task Scheduler: www.iopus.com/guides/winscheduler.htm and

www.microsoft.com/windows2000/techinfo/howitworks/management/task_scheduler.asp
9 MSMQ: www.microsoft.com/ntserver/techresources/appserv/MSMQ/whatsnew.asp

Other Schedulers
9 Arcana Development - Arcana Scheduler: www.arcanadev.com/scheduler
9 Cypress Technologies – Autotask: www.cypressnet.com/Products/autotask/autotask.htm
9 DWG Software Ltd – WinCron: www.dwgsoftware.com/help/task_scheduler.html
9 Java Scheduler: www.jscheduler.com
9 RJ Software – Clockwise: www.rjsoftware.com/ClockWise/scheduler.html
9 Splinterware - Windows Scheduler: www.splinterware.com/products/wincron.htm
9 Unisyn Software – Automate: www.unisyn.com/automate

Other Resources
9 www.asb2.com for information about the Aspen Software building blocks that have been

used in the production of the examples featured in this paper.
9 info@aspensoftware.co.uk if you have any questions about this subject.

References & Acknowledgements
1 Bob Hellriegel, Zytech Inc - “The Network that Never Sleeps”, excerpt from

“MultiUser R:BASE” presented at the 1992 R:BASE Explosion.
2 Neil Smith & Suzy Smith, Aspen Software - “Recycling Oterro”, presented at the 2000

R:BASE Developers’ Conference.
(See www.aspensoftware.co.uk/RBASE/otrecycle.htm)

3 Microsoft Knowledge Base article Q253370 – How to Enable Automatic Logon in
Windows.

9 Automated report production “images” produced courtesy of Added Dimension Ltd

www.added-dimension.co.uk.

Ref

http://www.oterro2000.com/Products/Oterro.htm
http://www.aspensoftware.co.uk/RBASE/otrecycle.htm
http://www.allapi.net/apilist/apifunction.php?apifunction=CreateProcess
http://www.vbapi.com/ref/w/waitforsingleobject.html
http://www.allapi.net/apilist/apifunction.php?apifunction=Sleep
http://www.ntfaq.com/Articles/Index.cfm?ArticleID=15153
http://www.iopus.com/guides/winscheduler.htm
http://www.microsoft.com/windows2000/techinfo/howitworks/management/task_scheduler.asp
http://www.microsoft.com/ntserver/techresources/appserv/MSMQ/whatsnew.asp
http://www.arcanadev.com/scheduler
http://www.cypressnet.com/Products/autotask/autotask.htm
http://www.dwgsoftware.com/help/task_scheduler.html
http://www.jscheduler.com/
http://www.rjsoftware.com/ClockWise/scheduler.html
http://www.splinterware.com/products/wincron.htm
http://www.unisyn.com/automate
http://www.asb2.com/
mailto:info@aspensoftware.co.uk
http://www.aspensoftware.co.uk/RBASE/otrecycle.htm
http://www.added-dimension.co.uk/

	Summary
	Challenges
	A Recycled Design
	The Queue
	The Client
	The Server
	Key Benefits
	Building Your Own
	Extending the Design
	Conclusions

